Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall.
نویسندگان
چکیده
The utility of adenoviral vectors for arterial gene transfer is limited by the brevity of their expression and by inflammatory host responses. As a step toward circumventing these difficulties, we used a rabbit model of in vivo arterial gene transfer to test 3 second-generation vectors: a vector containing a temperature-sensitive mutation in the E2A region, a vector deleted of E2A, and a vector that expresses the immunomodulatory 19-kDa glycoprotein (gp19k) from adenovirus 2. Compared with similar first-generation vectors, the second-generation vectors did not significantly prolong beta-galactosidase transgene expression or decrease inflammation in the artery wall. Although cyclophosphamide ablated the immune and inflammatory responses to adenovirus infusion, it only marginally prolonged transgene expression (94% drop in expression between 3 and 14 days). In experiments performed with "null" adenoviral vectors (no transgene), loss of vector DNA from the arterial wall was also rapid (>99% decrease between 1 hour and 14 days), unrelated to dose, and only marginally blunted by cyclophosphamide. Thus, the early loss of transgene expression after adenoviral arterial gene transfer is due primarily to loss of vector DNA, is not correlated with the presence of local vascular inflammation, and cannot be prevented by use of E2A-defective viruses, expression of gp19k, or cyclophosphamide-mediated immunosuppression. Adenovirus-induced vascular inflammation can be prevented by cyclophosphamide treatment or by lowering the dose of infused virus. However, stabilization of adenovirus-mediated transgene expression in the arterial wall is a more elusive goal and will require novel approaches that prevent the early loss of vector DNA.
منابع مشابه
Designing E1 Deleted Adenoviral Vector by Homologous Recombination
Adenoviruses are used extensively to deliver genes into mammalian cells, particularly where there is a requirement for high-level expression of transgene products in cultured cells, or for use as recombinant viral vaccines or in gene therapy. In spite of their usefulness, the construction of adenoviral vectors (AdV) is a cumbersome and lengthy process that is not readily amenable to the generat...
متن کاملEpisomal persistence of recombinant adenoviral vector genomes during the cell cycle in vivo.
Previously we showed that recombinant adenoviral helper-dependent (HD) vectors result in long-term transgene expression levels in vivo which slowly declined by 95% over a period of 1 year. In this study, we further establish that this was not predominantly immune mediated. To determine if cell turnover was responsible for the loss of transgene expression, we induced rapid hepatocyte cell cyclin...
متن کاملInclusion of the E3 region in an adenoviral vector decreases inflammation and neointima formation after arterial gene transfer.
Adenoviral vectors are promising agents for vascular gene transfer. Their use, however, is limited by inflammatory host responses, neointima formation, and brevity of transgene expression. Inclusion of the immunomodulatory adenoviral E3 genes in a vector might prevent inflammation and neointima formation and prolong transgene expression. We compared 2 adenoviral vectors in a model of in vivo ge...
متن کاملA new type of adenovirus vector that utilizes homologous recombination to achieve tumor-specific replication.
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we dev...
متن کاملEfficient directional cloning of recombinant adenovirus vectors using DNA-protein complex.
We describe an efficient cloning system utilizing adenoviral DNA-protein complexes which allows the directional cloning of genes into adenoviral expression vectors in a single step. DNA-protein complexes derived from a recombinant adenovirus (AVC2.null) were isolated by sequential use of CsCl step gradients followed by isopycnic centrifugation in a mixture of CsCl and guanidine HCl. AVC2.null i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2000